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SECTION I
MICROTHERMAL SPECTRAL EXAMINATION

This report is concerned with the estimation of power spectra of
microthermal fluctuations. It represents work directed at verifying
spectra being routinely obtained from microthermal data recorded
using high-flying aircraft. The material within this report is not
intended to represent new and unique research in the field of digital i
signal processing, but rather to document and discuss the various
well accepted techniques.

The microthermal fluctuations are important because they give in-
formation on spatial refractive index fluctuations which is necessary
to the calculation of the behavior of light beams propagating to and
from high-flying aircraft. During 1974 and 1975 many such spectra were
obtained at Kirtland Air Force Base to provide a heretofore unavailable
data base for such calculations. The calculations presented here were
performed as a routine check on these spectra and the procedures used
to obtain them.

The microthermal fluctuation data are obtained using a platinum-
wire microthermal sensor mounted near the front or top on an aircraft
fuselage and sufficiently removed from the surface to be outside the
aircraft boundary layer. The data are recorded on FM analog tape in
sections roughly two minutes in duration. Typically six to twelve
such runs might be recorded in one flight. The data are then possibly
filtered, digitized, and computer processed to obtain the temporal
spectra. The spectra obtained here check on the data processing portion
of the effort, repeating the digitization and computer processing.

Section II of this report contains a discussion of the preliminary
data management including digitization rates, scaling and the removal
of some spikes that were found in the analog record. Sections III and
IV contain the details of the procedures for obtaining the spectra.

The spectra were divided into frequency regions. Section III contains
the details of the basic processing procedure. These were used di-
rectly in the highest frequency region. The basic procedure includes
multiplying by data windows, pre-whitening/post-darkening, ensemble
averaging, and the calculation of confidence intervals. In Section IV
the additional procedures of smoothing and decimation, necessary for
extending the spectrum to Tower frequency ranges, are presented. The
results of the combined high and low frequency procedures are presented
in Section V. Section V also contains a comparison with the spectrum
obtained previously at Kirtland Air Force Base. Section VI gives some
thoughts on procedures suggested to improve spectral resolution and
reliability.




SECTION II
DIGITIZATION AND PRELIMINARY PROCESSING

In this section we present a discussion of the sampling rate and
a discussion of one other problem, the occurence of spikes in the
primary data tape.

To be thorough we elected to determine our own digitization rate.
The full bandwidth of the electronics was 20 KHz. To achieve at least
this sampling frequency with the available 500 Hz A-D converter, we
played-back the tape at a speed reduced from 30 IPS by a factor of 64,
i.e., at a tape speed of 15/32 IPS. At this tape speed the Nyquist
rate corresponding to our system bandwidth is 312.5 Hz.

Calibration of the data was accomplished by means of a f.15°C
100 Hz square wave recorded on the leading edge of the tape. Several
cycles of this reference square wave were digitized along with approxi-
mately 2 minutes of data. In addition to calibrating the magnitude of
the temperature fluctuations, inspection of the digitized version of
the square wave enabled the accurate calculation of the sampling rate.
This precise value of the equivalent sampling rate was 30.65 KHz. In-
spection of the digitized microthermal data revealed several periods
with severe spiking. Such spiking is exemplified by Figure 1, which
represents 33.5 msec. of data. (The straight line represents the
average temperature.) The spiking in general consisted of from two
to five very narrow (v130 usec) pulses spaced approximately 8 msec.
apart. The inter-group spacing appeared to be random. Since in-
clusion of these spikes in our spectral calculations would decrease
the reliability of our results, they were eliminated by a simple linear
interpolation between data points on either side of the spikes. The
same time span of data shown in Figure 1 is again shown in Figure 2
with the spikes removed by the interpolation scheme.

This concludes our discussion of the preliminary processing of the
microthermal data including digitization, scaling and spike removal.
The next section outlines the techniques employed in the high-frequency
analysis.
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Figure 2. Time trace of microthermal data
with spikes removed.
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SECTION III
HIGH FREQUENCY RANGE ;

We first proceed with a discussion of some classical techniques
employed in the digital estimation of power spectra.

A. Power Spectrum Using the Fast Fourier Transform

Here we state the equations used in the Fast Fourier Transform
(FFT) and in the calculation of the discrete power spectrum and show
that they approximate the continuous spectral integrals under consid-
eration. We assume that we have many groups of N sampled data values,
sampled at intervals of to'

The equations implemented by the FFT algorithm are

N i 2L (k-1)(L-1)
x(L) = KZ] C(K) e (1a)
¥ -i &L (K1) (L-1)
C(K) = N Z X(L)e ‘ (1b)
L=1
This pair of equations can be shown to approximate the continuous
Fourier transform pair
f(t) = %; J g(w)e1wtdw (2a)
g(w) = j f(t)e tat . (2b)
This is accomplished using the substitutions
: N
F L - L' + '2‘ (33)
F(L't.) = X(L' - )
b o '2'
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e(an/Nto)e‘i“(K“) = Nt C(K) (3¢)

and by changing the limits on K to (1- N/2, N/2) which can be done
because C(K? is periodic, C(K) = C*(N-K+2). These substitutions allow
Equations (1) to be written in the form

. 2m
i Nf; (K—])(L-])t0

n

m

%

o~ =

(4a)

=4
F(Lto) * G(k2 /Nto)e

=2

|=

2'" '
* Nt (K-1)(L -1)to
F(L't e 2 . (4b)
N

G(ZnK/Nto) = 5
=1- >

L

- N

The substitutions in Equations (3) serve two purposes. They allow
the identfication of the correspondence between the discrete and con-
tinuous variables, as in the following expressions;

t v Nt (5a)
dt ~ t, (5b)
w v 2mK/NE (5¢)
du v 2n/Nt (5d)
f(t) ~ F(L't)) = X(L') (5e)
g(w) ~ G(27K /Nto)ei"(K'” = Nt C(K). (5f)

The second purpose is for completeness. It is to shift the summation
limits to make them symmetric. This is done in the frequency domain
by changing the summation limits from (1,N) to (1-N/2, N/2) (allowed
since the representation is periodic) and by translating the data
string to make it symmetric.




It is assumed that the data is sampled sufficiently rapidly so
that the summations accurately represent the respective integrations.

The autocorrelation R(Ltg), and the power spectral density,
S(K2 /Nto) are defined respectively in Equations (6). The angular
brackets indicate ensemble averaging.

R(Lto) = <F(Ito)F*((I+L-1)t0)> (6a) ;’
. 2m
N/2 1 -N—t—' (K‘])(L-])
- 3 § s(k2 /Nt Je  © e (6b)

1-N/2 0

These are to be compared with the corresponding equations for the con-
tinuous case:

R(tysty) = <F(t])F*(ty)> (7a)

i iw(t,-t,)
R(ty,t,) = %? J > Wole | 2 . (7b)

We also have for the continuous case,
<g(uy)g*(uy)> = W(wp)6(uy-u,) . (7¢)

Clearly the spectral density, W(w) corresponds to S(K2n/Nt0) in
the discrete case.

The power spectral density, S, for the discrete case is related
to the transform of the data, C(K) by Equation (8).

-iﬂ(Ker)
Nto<C(K]2n/Nto)C*(K22n/Nto)>e = GKIKZ s(sz/Nto) (8)

Equation (8) is the discrete counterpart of the continuous form in
Equation (7c). Thus for any single data transform we take for com-
putational purposes
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S(Kem/Nt ) = T|C(Kan/Nt ) |2 (9)

where

T = Nt (10)

We note that there are only N/2 unique values for the spectrum,
S(k2 /Nty). This follows because S(K2m/Ntg) is symmetric about zero
frequency. Thus the frequency dynamic range is m/ty, covering the
range (2m/Ntg,m/tg).

B. Trend Removal

To improve our estimates of the very low frequency components of
our data, it is beneficial to remove the DC and linear trends [4]
before calculating the power spectrum.

The suposition that the data of interest are modulated by a
linear trend is expressed as;

X; = éo + é]ti %8 (11a)

where the xj are the original data, éo and é] are respectively esti-
mates of the DC and linear trend, and the x{ are the data of interest.
It is easily shown [1] that for a minimum mean square error fit,

NEt.x. - Zt,izx,i

By ] (11b)
1 Nzt% - (zti)2
A 3 'I -~

Without .1oss of generality we can assume t.=(i-1). In this case
Equations (11) simplify somewhat to yield,




s L he ; (N-1
B] N—(N-z‘-—]—)‘ [Z(’I-1)Xi - —f—l in] (]28)

é=%[2xi-ém] ; (12b)

The data of interest are then given by

x% x %y # Bo - 81(i-1) ; (13)
The reason for subtracting linear trends is to improve low-frequency
estimates when the data string is not sufficiently long to give in-
formation about the lowest frequencies. Thus a Tinear trend could be
part of a sine wave with period longer than the data duration. The
effect of a trend is to augment the values of the lowest few harmonics
by adding in the Fourier series spectrum of a linear waveform thus
giving incorrect values. The existence of the lower frequencies can
be indicated by the shape of the lower frequency portion of the spec-
J trum. If the spectral values continue to rise as the frequency de-

E | creases right down to the lowest harmonic, then the existence of even
i Tower frequencies would seem quite possible.

€ Hanning and Compensation for Non-Unity Energy

The use of the finite discrete Fourier transform pair (Equations
(3a,b)) implies that we are looking at a finite section of an infinite
string of data [7]. That is, we are viewing our data through a rec-
tangular data window of unity height and length T. Multiplication of
our data by this window results in the true spectrum being convolved
with a sin(x)/x function*. Since this function has significant
sidelobes, we wish to somehow alter our rectangular window so that
the resulting convolution is with a function with significantly lower
side lobes. Such a data window commonly known as the Hanning window [4]

TR

is given by
L '% [1 + cos ikﬁ}%ﬂlglﬁ] . (14)

*This error is often referred to as leakage.




Equivalent to multiplying our data by this window and transforming, is
simply calculating [2] in the frequency domain

] 1
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Note that by use of our data window as in Equation (14), we have de-
creased the energy in our original data. Therefore to obtain an
unbiased estimate of the true power spectrum [3], we require that the
Hanned estimation on the right hand side of Equation (9) be multiplied
by 8/3. See Appendix A for a demonstration of this factor.

D. Pre-Whitening and Post-Darkening

We next consider the problem of estimating the harmonics of a
spectrum which has a large dynamic range, i.e., one which is steeply
sloping. Recall from Section C that the spectrum we calculate is
really the true spectrum convolved with the transform of our data
window. If the true spectrum is steeply sloping even though the side
lobes of the transform of the data window are small, the product of
the harmonics of the side lobe and the off-center harmonic (which is
much greater than the center harmonic) of the true spectrum may be
comparable to the estimate of the center harmonic. Therefore to
reduce this problem, we resort to the technique of pre-whitening [4]
which effectively evens out the true spectrum. Such a pre-whitening
scheme is implemented by calculating

Xg = @ X5 93 122,300 0,N
b s (16)
Xs M

where o is the pre-whitening parameter. Some a priori knowledge of
the general shape and dynamic range of the true power spectrum is
needed to choose a value for a. Use of expression (16) results in
the true power spectrum being multiplied [4] by

1. 25lbad) 4 an
1-a e N i




This function is shown plotted in Figure 3 for several representative
values of . For the high frequency range, a= 0.975 seemed to be a
good choice for our data.

So to summarize, our procedure for power spectrum estimation
amounts to;

removing DC and Tinear trends (Equations (12) and (13))
prewhitening (expression (16))

calculating the voltage spectrum C(K) (Equation (3b))

hanning the spectral components C(K) (expression (15))
calculating the power spectral harmonics S(K) (Equation (3a))
compensating for non-unity energy in the data window by
multiplying the S(K) by 8/3

7) post-darkening by dividing the power spectral estimates

S(K) by expression (17).

DN WM —
— e e e e

E. Ensemble Averaging, Confidence Intervals

We now come to the question of how adequately our spectra estimate
the true power spectrum. If we assume we have calculated several
spectra (of successive data strings of period T) then assuming that
all the data are from a random stationary process, we can average at
each spectral harmonic [5], over all the spectral realizations. That
is if the ith harmonic of the jth spectral realization is denoted as

Sij’ then our average spectrum will be given by

< 1
S =1 k S:. (18)
1 L j=1 W

wnere §i denotes the estimate of the ith harmonic of the true spectrum

Si.

If we now assume that the original data were samples from a
gaussian random process with zero mean and power spectrum Si then the
statistic

25,
Y = —'5—1— (]9)

has an approximate chi-square distribution [6] with 2L degrees of
freedom (x2(2L)). The factor of 2 arises because Sy is the modulus
of a complex random variable Ci (2 degrees of freedom).

10
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With the assumption that Y is x2(2L) we can calculate the proba-
bility that the true spectrum lies within a certain region of our
estimate Si' Such a probability is expressed as

Pla<Y<b)=1-7Y 0a)
or g
LS.
P(xz L=< i Y)=1 . (20b)
2L 7 i 2L31- 7. b
where x2 X and x2 y are respectively the v/2 and 1-v/2 per- ?
2L; 7 2L; 1 -7 2

centile points of a x2 distribution with 2L degrees of freedom. With
some algebraic manipulations, Equation (20b) becomes

S
P(— <1< )=1-Y. (21) .
X S; X b

SR 1 X
2Lsl- 3 2L; 2

Equation (21) states that on the basis of the available data, with
probability 1-v, the true spectral value Si lies within the limits

&S anaShe. § (22)
XZ i XZ i
2L:1- & 2Ly £

il " 2

Figure 4 is a display of these confidence limits plotted vs the number
of spectra in the average. I

This concludes our discussion of several classical techniques
employed in the digital estimation of power spectra for the high-
frequency range. We have described the process of spectrum calcu-
lation via the FFT, the techniques of trend removal, hanning and )
compensation for non-unity energy in the hanning window, pre-whitening/
post-darkening, and a goodness of estimate criterion for our final
power spectrum.

The spectra calculated by the methods outlined in this section
were taken to be bandlimited to w = * 9.629 x 104 rad/sec and have
the first harmonic at Aw = 47.017 rad/sec. In the next section we
will give a procedure for estimating frequencies lower than 47 rad/sec.

12 "




39VYH3AV NI V¥103dS 40 ¥38NWNN
S¢ oe G2 02 Sl

*SAaqUaW 3| QUASUD JO JIQUNU Y3 JO UOLIDUNS © Se SILWL| SIUSPLIUOD PIZL [BUION

Ol

Sy e WO

TVNY3LNI 3ON3AI4INOD 060
SLINIT ALITI8VE0¥d —VND3

JOVY3IAV 40 NOILOVYS V SV SLINIT ¥3ddN 8 ¥3IMO

13




SECTION IV
LOW FREQUENCY RANGE

We now present a technique for estimating frequency components
lower than the first harmonic of the high frequency range.

If we recall Equation (5d)

Aw= —-N'—S e3)

where fS = 1/t°

we see that there are two ways to estimate lower frequencies: (1) use
a larger FFT, i.e., make N larger or (2) decrease fs. Since for prac-
tical purposes we are limited by our equipment to an FFT with 4096
points, we must decrease the sampling frequency. Merely decreasing
the sampling frequency, however, would result in aliasing of the es-
timated spectrum. Therefore to avoid aliasing we must first apply a
low-pass digital filter [4] to our data and then decimate (take every
4th or every 10th or every 64th etc. point) the resulting band-limited
data.

Such a smoothing operation (low-pass filtering) can be performed
as

n+§-1
Y = X (24)
n j=n J

where £ is to be chosen later. It is easily shown that application of
Equation (24) results in the power spectrum being multiplied by

sin &w(K-1)/N 2
sin w(K-1)/N

This function effectively band-limits the spectrum to harmonics

one through N/% at which point the transfer function has its first zero.

We may also reduce the side lobes of this transmission function
by using successive smoothing operations, e.g.,

n+p-1
Z = E Y
n j=n J

where p#%. Obviously these two successive smoothing operations multiply

the true spectrum by

14
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[sin in(K-1)/N ]Z[sin pr(K-1)/N ]2 ! (25)

sin w(K-1)/N sin m(K-1)/N

With the smoothing operation thus accomplished we can then decimate
our data without folding harmonics N/2 through N/2 - 1 onto harmonics
zero through N/2 - 1.

Then one can go on with the general procedure outlined previously.
After performing these calculations, the resulting spectra are then
simply divided by expression (25).

[sin M(K-l)j(an]z [sin p(K-1)/(nN) ]2 06)
sin m(K-1)/(nN) sin m(K-1)/(nN) 2

where n is the decimation factor. This division operation deserves

one word of caution: Division by the small magnitude of the filtering
transfer function near the high frequency end of the pass-band em-
phasizes the effects of noise. Therefore these last few high frequency
estimates should be discounted.

For the spectra calculated herein we chose to smooth successively
by groups of 7 and 8. The power spectrum of these smoothing operators
is shown in Figure 5. With the smoothing thus accomplished, we then
decimated by 4, i.e., we kept only 1/4 the number of points. Figure
5 also shows the resulting aliasing. Going back to Equation (4) of
the previous section we see that we have decreased the harmonic spacing
(and the bandwidth) by a factor of four.

The advantage of this smoothing and decimation technique is that
one can repeat the operation many times. Thus we can estimate ar-
bitrarily low (limited only by the total amount of data) frequencies.

Smoothing techniques as evidenced by Equation (24) are of a general
class known as nonrecursive filtering. The more elegant recursive fil-
tering employs a linear combination of the form

Y =

2
" 4s0

k
aixn+l i3 igl biYn-i'

With the proper choice of weights a; and bj this summation yields the
digital analog of more sophisticateé filters, e.g., Butterworth,
Chebyshev. Reference 10 contains a comprehensive discussion of these
techniques.

15




This ends the theoretical background for the estimation of micro-
thermal fluctuation power spectra. In the next section we consider the

selection of spectral ranges, i.e., data record lengths and decimation
factors for the desired confidence intervals.
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Figure 5. Power transfer function for smoothing
by groups of 7 and 8.
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SECTION V
SELECTION OF SPECTRAL RANGES

We now consider a question not mentioned previously. That is,
given a very large amount of data how should it be divided in order
to obtain the best spectra the most efficiently? This question is
faced every time one analyzes a data sequence of more points than the
largest available FFT. The answer determines the precision of the
spectral estimates and the required computer time and must certainly
be determined before starting the procedures of Sections III and IV.
Here we present recommendations to assist in the solution of this
problem for any particular case.

The result of the procedures described in this chapter is a
composite spectrum covering several different ranges. These will be
obtained from data sequences of different time durations. The higher

the frequency, the shorter the time duration of data which is required.

The data sequence for each spectral range 1s divided into sections,
the spectrum is obtained for each, and all the spectra are averaged
point by point to provide a statistically reliable estimate. For

all but the highest frequency range the data sequence has been formed
from the filtering and decimation procedures. The lowest frequency
ranges will have no statistical averaging since the data have been
decimated to the point where there are sufficient points for only a
single FFT. As a rule there is reduced statistical reliability at
the low frequency end of the spectrum.

We assume as starting information that the data sequence has a
total time duration Ty, is bandlimited and has been digitized at a
rate fg, which is greater than or equal to the Nyquist rate. We
expect as a final result a composite power spectrum with a lowest
frequency around 1/T7 and a highest frequency of fo/2. Four points
should be considered in the section of spectral divisions:

1. the duration of the data sections for each spectral range

2. the number of spectra in the ensemble average for each
spectral range

3. the factor by which to decimate
4. the treatment of the lowest frequency range.

The question of the duration required for the data sections will
be considered first. The discussion is aimed primarily at the high
frequency range, however it is applicable with the proper frequency
scaling to all frequency ranges. The basic issue is whether to employ
one large or several small FFT's. In the former case there would be
fewer spectral ranges covering the same span of frequencies. The
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answer depends upon the computer time required to perform large FFT's
and a few filtering and decimation procedures as opposed to small FFT's
and many filtering and decimation procedures. Since for many computers
(as was the case here) the filtering and decimation procedure requires
significant amounts of time, choosing the largest possible FFT gives
the more efficient procedure. If the largest FFT required N points
then the highest frequency range will span the frequencies fp/N to

fo/2 as shown in Figure 6.

Now consider the question of statistical reliability. The desired
precision is used in conjunction with Figure 4 which gives the ratio
of confidence interval (normalized to the mean value) as a function
of M, the number of spectra averaged. In addition it simplifies the
decimation operation if M is chosen to be a power of 2. For our case
M=32 seemed a good choice.

The next issue is the decimation rate. The guideline here is to
decimate by a sufficient factor so that there is only a small overlap
between the adjacent spectral ranges. An overlap of a factor of 8
or 16 seems to be reasonable. The factor of 8 gives at most eight
points for comparison.

For decimation by a factor of 2" the next to highest frequency
range will run between fo/N2N and fp/2(2)n, and after decimating m
times the resulting frequency range will be between fo/N2PM and
fo/2(2)"M.  The next to highest frequency range will require a data
duration of MN(2M")/fy seconds and after decimating m times the re-
quired data duration will be MN(2NM)/fy seconds. Finally we require
that after m decimations each by a factor of 2N we are left with
exactly one record of N points.

The last point is the treatment of the lowest frequency range.
This is important because in the low frequency ranges the duration of
the individual sections is sufficiently long to reduce the number of
sections, thus giving reduced statistical reliability. Indeed in
the Tast range there will be only one section of duration Ty. The
single spectrum yields minimum statistical confidence. For this fre-
quency range confidence intervals may be improved by dividing the N
remaining data points into several smaller sub-sections and performing
a smaller FFT on each. This increases the lowest estimable fre-
quency by a factor equal to the number of subsections. Therefore
we see that as one attempts to estimate lower and lower frequencies
(assuming the data is of limited extent) the confidence intervals must
necessarily increase.

The low frequency problem can be minimized in many cases by
choosing the digitizing frequency fog so that there are exactly N data
points after the final filtering/decimation operation and exactly M
sections of N points each before the final smoothing and decimation
operation. This requires that M, the number of sactions averaged be
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equal to 2", the decimation factor, and that the digitization frequency
be fo=NK/Ty, where k=2"M jis the original number of sequences of N points
each in the unfiltered data.

As an example sup?ose we have NK=222 data points and the largest
available FFT has N=212 points. Then we have K=210=1024 sequences of
4096 points each. The desired confidence intervals require averaging
over M=29=32 spectra. Consequently we must have K=2nM or n=LogpM=5
so that m=2. That is we need m=2 decimations each by a factor of
2"=32. For the highest frequency range we nead only calculate 32 of
the possible 1024 spectra to attain the desired precision. After the
first decimation by 25 we are left with 32 records of N peints each,
and after the second decimation with exactly one record of N points.
This example gives an overlap between successive spectral ranges of
26=64 points.

This completes the discussion of the selection of spectral ranges.
The procedure outlined herein offers a straightforward approach aimed
at providing the desired precision of the spectral estimates con-
sistent with minimum computer time.
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SECTION VI
RESULTS

We now present the results of the procedures which were outlined
in Sections III, IV, and V.

Our results consist of several plots, each marked with a group
number, a range number and an average over K files. The group number
refers to a particular 8.36 second segment of data (of which there are
15).  The range number n refers to the sp?ctr calculated from data
which have been decimated by a factor of 4 n-1). Each file refers to
a single 4096 point FFT, and the ?um?ﬁr K denotes the number of spectra
averaged to produce the plot (K=4\nN-1J),

Plots 7 and 8 show the spectra calculated for ranges 1 and 2
respectively. We note the presence of the noise spikes. The first
spike is at approximately 400 Hz, the second and third spikes are
respectively 3rd and 5th harmonics of 400 Hz. The remaining spikes
are all approximately harmonically related and as such can be dis-
counted as legitimate data.

Plots 9 through 12 show the complete results for group 1. The noise
spikes evident in ranges 1 and 2 have been removed. Note that in the
regions of overlap between successive ranges there is very good agree-
ment between spectral estimates.

Next, plots 13 through 15 are the same as plots three through five
with the exception that we have also plotted the 90% confidence in-
tervals.

Finally, Figures 16 are composites of the spectra from all fre-
quency ranges averaged over the full 2.14 minutes. As a check on the
spectrum calculated herein, the signal variance over the entire 2.14
minute run was estimated graphically from the spectrum of Figures 16-a
and compared with the variance calculated from the raw data. The two
estimates were found to differ by less than 2%.

By averaging spectra over the entire stretch of data we have
obviously made the assumption that the process giving rise to the
temperature fluctuations is wide-sense stationary. That this might
be the case is indicated by the map shown in Figure 17.

The position and flight length during which the data were taken
is indicated by the large black arrow. As can be seen, there are no
large-scale geographical features in the area of data acquisition
which would destroy the stationarity of the data. The map also shows
surface features which could have a profound effect. Therefore this
point should be checked on each data run until more is known about the
effects of terrain features.
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Figure 18 shows the spectrum obtained with the standard procedure
used at Kirtland Air Force Base. The curve has been ngrmalized so
that the area under the curve is equal to 2no2 where o2 is the variance
estimate obtained in this report. This normalization corrects for a
discrepancy in spectral magnitudes. Comparison of Figures 16-a and 18
shows that the spectra agree quite closely.
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Figure 7. High frequency range spectrum.
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Figure 10. Same plot as in Figure 8 with frequency
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Figure 13. Spectrum with 90% confidence interval.
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Figure 16-b. Spatial spectrum corresponding to Figure 15-a
(velocity = 155 m/sec.).
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SECTION VII
SUMMARY AND CONCLUSIONS

This report has considered the calculation of temporal spectra
of microthermal fluctuations measured aboard a jet aircraft. The
calculations were performed as a check on spectra obtained at Kirtland
Air Force Base.

Section II discussed the digitization of the analog data plus
some preliminary processing such as removal of obviously erroneous
data spikes.

Section III covered the various techniques employed in calculating
the power spectrum by use of the F.F.T. algorithm. Such techniques
include trend removal, Hanning and compensation for non-unity energy,
prewhitening and post darkening and calculation of confidence in-
tervals. Also contained in this section is a discussion of the analogy
between the equations implemented by the F.F.T. and the integral
Fourier transform pair.

The calculation of spectra for arbitrarily low frequencies is
demonstrated in Section IV. In addition to the technique outlined
above, use is made herein of digital filtering.

Selection of sampling rates, and spectral ranges which will yield
the desired confidence levels are discussed in Section V.

The results of the calculations are contained in Section VI in
the form of several graphs.

As a result of the present analysis several heretofore unknown
features of the data were uncovered and some suggestions for future
data analysis were made.

It can be concluded that there was good agreement in shape and

close but not exact agreement in magnitude between the spectra calcu-
lated herein and those calculated at Kirtland Air Force Base.
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experienced when a non-rectangular data window is employed. For the

APPENDIX

In this appendix we demonstrate the decrease in relative energy

Hanning window the decrease is shown to be by a factor of 3/8.

1
The spectrum as expressed by Equation (1b) in the text is t
o 2T 4
N -i & (L-1)(K-1) ;
k) =% I X(e N : ?
L=1
The total energy is thus given by i
. 2T . Bx
N N N -i =— (L-1)(K-1) i =— (L-1)(M-1)
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For the recgangu]ar data window the relative energy is (X(L)=1);
Ls],2, =N
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L

Now the Hanning window as expressed by Equation (14) in the text

X(L) = %- [1 + cos LL:%%%LELE]

is
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BASE UNITS:
—Quantity

length

mass

time

electric current
thermodynamic temperature
amount of substance
luminous intensity

SUPPLEMENTARY UNITS:

plane angle
solid angle

DERIVED UNITS:

Acceleration

activity (of a radioactive source)
angular acceleration
angular velocity

area

density

electric capacitance
electrical conductance
electric field strength
electric inductance
electric potential difference
electric resistance
electromotive force
energy

entropy

force

frequency

illuminance
luminance

luminous flux
magnetic field strength
magnetic flux
magnetic flux density
magnetomotive force
power

pressure

quantity of electricity
quantity of heat
radiant intensity
specific heat

stress

thermal conductivity
velocity

viscosity, dynamic
viscosity, kinematic
voltage

volume

wavenumber

work

METRIC SYSTEM

Unit

metre
kilogram
second
ampere
kelvin
mole
candela

radian
steradian

metre per second squared
disintegration per second
radian per second squared
radian per second

square metre

kilogram per cubic metre
farad

siemens

volt per metre

henry

volt

ohm

volt

joule

joule per kelvin

newton

hertz

lux

candela per square metre
lumen

ampere per metre

weber

tesla

ampere

watt

pascal

coulomb

joule

watt per steradian

joule per kilogram-kelvin
pascal

watt per metre-kelvin
metre per second
pascal-second

square metre per second
volt

cubic metre

reciprocal metre

joule

_ Multiplication Factors

0.001

0,000 001 -

0.000 000 001
0.000 000 000 001
0.000 000 000 000 001

0.000 000 000 000 H00 001 =

* To be avoided where possible.

= 10M
= 10"
= 10%
= 10"
=102
= 10"

= 10"
= 10~?
=10""
e
=10""
= 10-"
10
19~

i “ﬁ}i>-l$! g ;TEZE - Eh: e

: W
=

v

S1 Symbol

Prefix

tera
Riga
mege
kilo
hecto*
dekas*
deci*®
centi*
milli
micro
neno
pico
foemto
afto

__Formula

ms

(disintegration)/s

rad/s
rad/s
m
kg/m
AV
AN
Vim
VoA
WIA
VIA
WIA
N-m

X
kg:m's
(cycle)s
Im/m
cdm
cd-sr
Am
Vs
Wb/m
Jis
N/m
As
Nm
Wisr
Jkg-K
N/m
Wim-K
m/s
Pes
mis
WA
m
(wave)'m
Nm

S! Symbol
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